The regulator of nitrate assimilation in ascomycetes is a dimer which binds a nonrepeated, asymmetrical sequence.

نویسندگان

  • J Strauss
  • M I Muro-Pastor
  • C Scazzocchio
چکیده

The regulation of nitrate assimilation seems to follow the same pattern in all ascomycetes where this process has been studied. We show here by in vitro binding studies and a number of protection and interference techniques that the transcription factor mediating nitrate induction in Aspergillus nidulans, a protein containing a binuclear zinc cluster DNA binding domain, recognizes an asymmetrical sequence of the form CTCC GHGG. We further show that the protein binds to its consensus site as a dimer. We establish the role of the putative dimerization element by its ability to replace the analogous element of the cI protein of phage lambda. Mutagenesis of crucial leucines of the dimerization element affect both the binding ability of the dimer and the conformation of the resulting protein-DNA complex. This is the first case to be described where a dimer recognizes such an asymmetrical nonrepeated sequence, presumably by each monomeric subunit making different contacts with different DNA half-sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas.

Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit(-) (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2. The complete NIT2 c...

متن کامل

Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging.

Genetic evidence suggests that the NIT2 gene of Chlamydomonas reinhardtii encodes a positive regulator of the nitrate-assimilation pathway. To learn more about the function of the NIT2 gene product, we isolated the gene using a transposon-tagging strategy. A nit2 mutation caused by the insertion of a transposon was identified by testing spontaneous nit2 mutants for the presence of new copies of...

متن کامل

Involvement of the global regulator GlxR in 3-hydroxybenzoate and gentisate utilization by Corynebacterium glutamicum.

Corynebacterium glutamicum is an industrially important producer of amino acids and organic acids, as well as an emerging model system for aromatic assimilation. An IclR-type regulator GenR has been characterized to activate the transcription of genDFM and genKH operons for 3-hydroxybenzoate and gentisate catabolism and represses its own expression. On the other hand, GlxR, a global regulator o...

متن کامل

The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis.

Mycobacterium tuberculosis can utilize various nutrients including nitrate as a source of nitrogen. Assimilation of nitrate requires the reduction of nitrate via nitrite to ammonium, which is then incorporated into metabolic pathways. This study was undertaken to define the molecular mechanism of nitrate assimilation in M. tuberculosis. Homologues to a narGHJI-encoded nitrate reductase and a ni...

متن کامل

The crystal structure of the global anaerobic transcriptional regulator FNR explains its extremely fine-tuned monomer-dimer equilibrium

The structure of the dimeric holo-fumarate and nitrate reduction regulator (FNR) from Aliivibrio fischeri has been solved at 2.65 Å resolution. FNR globally controls the transition between anaerobic and aerobic respiration in facultative anaerobes through the assembly/degradation of its oxygen-sensitive [4Fe-4S] cluster. In the absence of O2, FNR forms a dimer and specifically binds to DNA, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 1998